Что такое P-Value?

Проверка гипотез или проверка значимости включают вычисление числа, известного как p-значение. Это число очень важно для завершения нашего теста. P-значения связаны со статистикой теста и дают нам оценку свидетельств против нулевой гипотезы.

Нулевые и альтернативные гипотезы

Все проверки статистической значимости начинаются с нулевой и альтернативной гипотезы. Нулевая гипотеза — это заявление о бездействии или общепринятое положение вещей. Альтернативная гипотеза — это то, что мы пытаемся доказать. Рабочее предположение при проверке гипотез состоит в том, что нулевая гипотеза верна.

Статистика теста

Мы будем предполагать, что условия выполнены для конкретного теста, с которым мы работаем. Простая случайная выборка дает нам выборочные данные. На основе этих данных мы можем рассчитать статистику теста. Статистика тестов сильно различается в зависимости от того, какие параметры касается нашей проверки гипотез. Некоторые общие статистические данные тестов включают в себя:

  • z — статистика для проверки гипотез относительно среднего генерального значения, когда мы знаем стандартное отклонение генеральной совокупности.
  • t — статистика для проверки гипотез относительно среднего генерального значения, когда мы не знаем стандартное отклонение генеральной совокупности.
  • t — статистика для проверки гипотез о разнице двух независимых средних значений совокупности, когда мы не знаем стандартного отклонения любой из двух популяций.
  • z — статистика для проверки гипотез относительно доли населения.
  • Хи-квадрат — статистика для проверки гипотез о разнице между ожидаемым и фактическим подсчетом для категориальных данных.

Расчет P-значений

Статистика тестов полезна, но может быть полезнее назначить p-значение для этой статистики. Значение p — это вероятность того, что, если бы нулевая гипотеза была верна, мы бы наблюдали статистику, по крайней мере, такую ​​же экстремальную, как наблюдаемая. Для вычисления p-значения мы используем соответствующее программное обеспечение или статистическую таблицу, которая соответствует нашей тестовой статистике.

Например, мы будем использовать стандартное нормальное распределение, когда вычисление статистики теста z . Значения z с большими абсолютными значениями (например, более 2,5) не очень распространены и дадут небольшое p-значение. Значения z , которые ближе к нулю, встречаются чаще и дают гораздо большие p-значения.

Интерпретация P-значение

Как мы уже отметили, p-значение — это вероятность. Это означает, что это действительное число от 0 до 1. Хотя тестовая статистика — это один из способов измерить, насколько экстремальной является статистика для конкретной выборки, p-значения — еще один способ ее измерения..

Когда мы получаем статистическую заданную выборку, всегда должен задаваться вопрос: «Является ли эта выборка такой, какой она есть случайно, только с истинной нулевой гипотезой? , или нулевая гипотеза неверна? » Если наше значение p невелико, это может означать одно из двух:

  1. Нулевая гипотеза верна, но мы просто Мне очень повезло с получением нашей наблюдаемой выборки.
  2. Наша выборка такова, потому что нулевая гипотеза ложна.

В целом, чем меньше p-значение, тем больше у нас доказательств против нашей нулевой гипотезы.

Насколько мало — значит мало Достаточно?

Насколько маленькое значение p нам нужно, чтобы отвергнуть нулевую гипотезу? Ответ на это: «Это зависит от обстоятельств». Общее практическое правило состоит в том, что значение p должно быть меньше или равно 0,05, но в этом значении нет ничего универсального.

Обычно перед проводим проверку гипотез, выбираем пороговое значение. Если у нас есть какое-либо p-значение, которое меньше или равно этому порогу, мы отклоняем нулевую гипотезу. В противном случае мы не сможем отвергнуть нулевую гипотезу. Этот порог называется уровнем значимости нашей проверки гипотезы и обозначается греческой буквой альфа. Не существует значения альфа, которое всегда определяло бы статистическую значимость.

Оцените статью
recture.ru
Добавить комментарий